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Abstract—Current quantumcomputershaveverydifferent qubit implementations,

instructionsets, qubit connectivity, andnoise characteristics.Using real-system

evaluationsonsevenquantumsystems fromthree leading vendors, ourworkexplores

fundamental designquestionsconcerninghardwarechoices, architecture, andcompilation.

& QUANTUM COMPUTING (QC) is a fundamentally

new model of computation, which exploits

quantum mechanical phenomena to perform

computation. QC systems use qubits (quantum

bits) to represent information and gates

(quantum instructions) to manipulate quantum

information. While the basic principles of QC have

been known since the 1980s, recent hardware

progress has ushered in the era of noisy intermedi-

ate-scale quantum (NISQ) devices. These systems

represent an important milestone toward large

scale QC, and are expected to scale to 500–1000

qubits in coming years. In spite of being too error-

prone and resource-constrained for well-known

applications like Shor’s factoring, NISQ systems

are capable of very powerful computations. Nota-

bly, Google recently demonstrated a classically
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intractable computation on an NISQ system with

54 qubits.1

Being early-stage, NISQ devices are highly

diverse in terms of hardware and

architecture. Leading QC vendors

including IBM, Rigetti, Google,

IonQ, and others have adopted

very different approaches for build-

ing hardware qubits. To support

their qubit choices, vendors have

also chosen different instruction

sets and hardware communication

topologies. Further, QC systems

also have variance in hardware

noise, owing to fundamental

challenges in qubit control and

manufacturing. While this diversity

itself poses a challenge for efficient

and portable application execu-

tion, there is also a huge gap

between the QC hardware that is buildable now,

and the resource requirements of compelling

real-world applications. Many interesting

applications demand large systems with several

thousand quantum bits and high-precision oper-

ations, but current hardware has less than

100 qubits and error-prone operations. To fully

attain practical and powerful QC, computer

architecture techniques and software toolchains

must be employed to narrow the algorithm-to-

devices resource gap across a wide range of

algorithms and devices.

To this end, our article2 offers one of the

deepest explorations of cross-platform charac-

teristics in QC systems, presenting a full-stack,

benchmark-driven, hardware–software analysis.

Viewing QC through the lens of computer archi-

tecture, we evaluate important hardware design

decisions (qubit types, system size, connectivity,

noise), the hardware–software interface (gate set

choices), and software optimizations to tackle

fundamental design questions: What instructions

should QC systems expose to software? Should

instructions be unified in a device-independent

ISA across different qubit types? How do hard-

ware connectivity and noise characteristics

impact benchmark performance? Can hardware

limitations be overcomewith a compiler?

To answer these questions, we use real-

system measurements to evaluate a suite of QC

applications on seven systems from three lead-

ing vendors—IBM, Rigetti, and University of

Maryland. The systems studied represent differ-

ent points in the design space,

with two leading qubit tech-

nologies (superconducting and

trapped ion qubits), different

connectivity topologies, pro-

gramming interfaces, and noise

behavior. The diversity of sys-

tems studied is important for

understanding which aspects of

QC design hold across different

design choices and which are

more implementation specific.

Our work represents the most

comprehensive cross-platform,

real-system measurements of QC

prototypes ever performed.

On the other hand, this design

space diversity also poses serious challenges for

accurate comparative studies. In particular, our

comparisons hinge on developing a toolflow and

evaluation approach common to all platforms,

and yet not penalizing any particular platform

while pursuing toolflow generality. Our toolflow,

TriQ, is the first top-to-bottom multivendor QC

compiler toolflow. TriQ optimizes high-level lan-

guage programs for QC hardware by leveraging

deep but parameterized knowledge of the target

device characteristics, including the gate set,

connectivity, and noise profile. Importantly, TriQ

avoids inefficiencies in vendor toolflows, offering

up to two orders of magnitude higher reliability

compared to IBM’s Qiskit3 and Rigetti’s Quil4

compiler which are the default toolchains for the

respective hardware. TriQ, therefore, allows us to

perform architectural analysis across diverse QC

systems using high-level application performance

measurements and is also a common compiler

toolflow.

Our experiments with TriQ reveal several

architectural insights for QC systems. We quan-

tify the importance of gate set, ISA and connectiv-

ity choices and offers design recommendations.

We also evaluate the effects of hardware noise

on applications and the importance of software

optimizations to mitigate such noise. Our results

have also attracted significant academic and

industry attention with vendors including IBM

While the basic

principles of QC have

been known since the

1980s, recent hardware

progress has ushered

in the era of noisy

intermediate-scale

quantum (NISQ)

devices. These systems

represent an important

milestone toward large

scale QC, and are

expected to scale to

500–1000 qubits in

coming years.
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and Rigetti incorporat-

ing our optimizations in

their compiler toolflows.

In coming years, hard-

ware and architectural

insights from our study

are likely to influence

QC.

BACKGROUND
ON QC

A qubit is the funda-

mental building block

a QC system. Unlike a

classical bit which is restricted to be either in

the state 0 or 1 at any instant, a qubit can exist

in a superposition state where it is a probabilistic

combination of the two basis states. This prop-

erty allows an n-bit QC system to represent 2
n

basis states simultaneously, unlike classical

registers which can be in exactly one of the 2
n

values at any given time. To manipulate informa-

tion, QC gates are implemented to operate on

one or more qubits, using some physical interac-

tion such as a microwave or laser pulse. Similar

to universal gates in classical systems, QC com-

putations can be expressed using a small univer-

sal set of single (1Q) and two-qubit (2Q) gates.

In particular, 2Q gates create entanglement

which is a key property exploited by algorithms.

To obtain classical output from the system,

qubits are measured or readout, collapsing the

superposition state to either 0 or 1.

QC ARCHITECTURE CHOICES
AND TRADEOFFS

NISQ systems have very diverse hardware

and architecture. While classical metrics such as

performance (time) and area are important to

evaluate these options, a key figure of merit in

the current NISQ regime is the likelihood of cor-

rect execution of applications. Owing to the

noise, a single execution of an application may

be corrupted by noise. Hence, programs are

typically run multiple times and the success rate

is measured as the fraction of trials which yields

the correct answer. Toward understanding how

system design affects success rate and perfor-

mance, we briefly discuss the key design choices

here and refer the reader to our original paper

for more details.2

Figure 1 shows the different hardware qubit

technologies used in IBM, Rigetti, and UMD sys-

tems. IBM and Rigetti use superconducting

qubits, while UMD uses trapped ion qubits. On

one hand, these choices are similar to how clas-

sical computers can be realized using vacuum

tubes, relay circuits or CMOS transistors. On the

other hand, qubit technologies are very different

and do not lend themselves to abstraction simi-

lar to the ON–OFF switch abstraction in classical

technologies. For example, on IBM’s supercon-

ducting qubits, the two-qubit interactions are

achieved using the cross-resonance effect,

where one qubit is driven at the resonant fre-

quency of another qubit using a coupled hard-

ware resonator. In contrast, in UMD’s trapped

ion qubits, two-qubit interactions are achieved

using collective motional modes of an ion chain,

mediated through laser pulses.

Owing to these fundamental differences, ven-

dors implement different native gates or microop-

erations that are feasible on their platform.

Figure 1 shows these native 1Q and 2Q gates.

Even among superconducting qubits, the native

interactions may be different. For example,

Rigetti uses the controlled Z operation as the fun-

damental 2Q operation instead of the cross-reso-

nance gate in IBM. Using these native gates,

vendors choose a software-visible programming

interface which includes either native gates

themselves or composite gates which use multi-

ple native gates. These choices for software-

visible gates also differ widely across vendors.

Figure 1. Hardware qubit technology, native gate set, and software-visible gate set in

the systems used in our study. Each qubit technology lends itself to a set of native gates.

For programming, vendors expose these gates in a software-visible interface or construct

composite gates with multiple native gates.
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Furthermore, QC devices have a qubit connec-

tion topology which determines the amount of

communication required to perform 2Q gates. As

shown in Figure 2, device topology varies across

systems, with sparse nearest-neighbor connec-

tivity in IBM and Rigetti, to full all-pairs connec-

tivity in UMD. When full connectivity is not

available, SWAP operations are used to enable 2Q

gates between arbitrary pairs of qubits. These

SWAPs increase program duration and more

importantly, worsen the success rate. The choice

of connectivity is not independent of the qubit

type. Trapped ion qubits naturally support

full connectivity, at least at small scales, while

superconducting qubits typically use sparse con-

nectivity because of difficulties in implementing

dense physical interconnections.

Finally, qubit states are

extremely fragile and difficult

to control. On current sys-

tems, typical 2Q error rates

are 1% –10%. Gate error rates

also have large spatial and

temporal variations depend-

ing on the qubit technology.

Figure 3 shows these varia-

tions for an IBM system. If a

program is executed on a sub-

set of unreliable qubits, the

success rate is greatly dimin-

ished. In addition, quantum

state “decoheres” or loses

reliability exponentially with

time. That is, if a qubit is ini-

tialized, there is a short win-

dow of coherence time within which all gates in

the program must be completed. On current

superconducting systems, coherence time is typ-

ically less than 100 ms and varies across qubits.

However, 2Q gates are relatively fast, requiring

hundreds of nanoseconds. On trapped ion sys-

tems, coherence time is significantly longer

(several seconds), but 2Q gates are slower,

requiring several hundred microseconds.

Our work focuses on how these design trade-

offs influence QC computer architecture and

software design. Toward this, we first develop

a common compiler toolflow, TriQ, that maps

programs onto diverse QC systems. Enabled by

TriQ, we perform real-system experiments to

explore the architectural design space.

TRIQ: FULL-STACK MULTIVENDOR
QC TOOLFLOW

Figure 4 illustrates the overall structure of

TriQ. TriQ accepts Scaffold5 programs as input.

Scaffold is a C-like quantum language which has

been used to develop large QC applications.

Using ScaffCC, Scaffold’s front-end compiler,

TriQ generates an intermediate representation

(IR) of the program and uses it as the input

for the subsequent optimization passes. TriQ

also takes hardware and system-specific features

such as gate sets, connectivity, and noise informa-

tion (from daily calibration logs for the systems)

as configurable inputs. Hardware-dependent

Figure 2. Characteristics of the devices used in our study. Each device has different

qubit and gate count (higher is better), coherence time (higher is better), error rates

(lower is better), and topology (dense connectivity is better).

Figure 3. Daily variation of error rates of four

hardware supported two-qubit controlledNOTgates in

IBMQ14. The average error rate is approximately 8%,

but there is up to 9x variation across qubits and days.
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optimization using these inputs

is a distinguishing feature of TriQ

that allows it to obtain high

success rates across platforms.

As output, TriQ generates opti-

mized code in the vendor-

specified assembly code.

To compile the IR, the first

step is to map program qubits

onto distinct hardware qubits.

For example, program qubits can

be assigned to hardware qubits

according to the order they are

used in the program. This policy

can result in high communication

overhead and poor success rate

when qubits participating in 2Q gates are not

mapped close together. If program qubits are

mapped onto unreliable hardware qubits, it

can further worsen the success rate. Therefore,

TriQ uses a noise-adaptive mapping strategy

which optimizes both communication and reli-

ability. TriQ chooses a set of qubits that match

well with the communication requirements of

the application and simultaneously, it ensures

that this set of qubits has low error rates for

the instruction mix of the application. TriQ

implements this policy using a satisfiability

modulo theory (SMT) optimization, solved

using Microsoft’s Z3 SMT solver.

To flexibly target different devices, we

designed the SMT optimization to work with an

abstract representation of the hardware. TriQ

preprocesses the target device’s connectivity

graph and gate error rate data and converts

them to a reliability matrix representation.

For each pair of qubits, the matrix specifies the

reliability of the lowest error rate path for a 2Q

gate between the qubits. When two hardware

qubits are far away in the communication topol-

ogy, the reliability of the best path will be low.

It will also be low if all paths between the two

qubits have high error rate edges. Therefore,

using the matrix, TriQ can pick communication-

and reliability-optimized mappings. Since the

core functionality of the pass operates using

this matrix abstraction, we can flexibly compute

good mappings for any device topology and

noise profile simply by changing compile-time

inputs.

Second, TriQ schedules gates in the program

in a topologically-sorted order using the IR. This

allows maximum operations to be executed in

parallel, reducing the errors due to qubit deco-

herence. For devices which do not support full

connectivity, TriQ automatically inserts the nec-

essary communication operations to bring

qubits into adjacent positions before executing

2Q gate. To improve success rates, TriQ incorpo-

rates noise-awareness in this step by selecting

the lowest error rate paths for moving qubits,

rather than any shortest distance path.

Third, TriQ translates high-level IR gates into

device-specific IR. Using a set of legal code trans-

formations that are provided as input, TriQ

replaces IR gates with equivalent device-specific

gates, e.g., OpenQASM code for IBM systems.

During this pass, TriQ also applies a 1Q gate

optimization where continuous sequences of 1Q

gates are compressed into shorter sequences.

TriQ exploits knowledge of hardware error rates

in this step as well. On all three vendors, single

qubit rotations gates along the Z-axis of the

qubit have no error.6 While compressing gate

sequences, TriQ maximizes the use of these Z

rotations, further increasing success rates.

REAL-SYSTEM ARCHITECTURAL
STUDIES USING TRIQ

We performed real-system measurements for

a set of 12 benchmarks on 7 QC systems. These

benchmarks include important QC kernels such

as the Toffoli gate and quantumFourier transform

Figure 4. Overview of the TriQ toolflow. Inputs are high-level Scaffold programs

and their inputs, as well as device-specific QC system properties. Output is

optimized code in one of three vendor-specific executable formats.
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operation. To understand architectural choices,

we performed multiple experiments with each

benchmark and system, varying the level of opti-

mization and the inputs used for compilation. We

used three main variants of the compiler with

increasing levels of optimization for gate sequen-

ces, communication and for noise-adaptivity and

a fourth baseline version with no optimization.

We compared different executables in terms

of instruction count and success rate. Figure 5

shows the measured success rates using TriQ’s

full optimizations. The key insights from our

study are summarized next.

Importance of Gate Set Specificity: We studied

whether it is beneficial to expose native gates to

software, instead of abstracting them in a device-

independent gate set. When TriQ has information

about the native gate set, the gate optimization

passes offers significant benefits. TriQ expresses

several program instructions using a small num-

ber of native gates, leading to an average 50%

reduction in the instruction count and up to 26%

increase in success rate. Therefore, unlike prior

proposals for device-independent ISAs for QC sys-

tems,7;8 our results show that such abstractions

are detrimental to high success rates. We recom-

mend that vendors make the most low-level native

gates in their devices software visible. As an anal-

ogy to classical microprocessors, this is similar to

making microoperations software visible.9

Importance of Qubit Connectivity: Our work

demonstrates that the match between applica-

tion communication requirements and device

topology significantly crucially impacts success

rates. Comparing near-neighbor versus fully-

connected systems (like IBM and UMD systems)

shows that machines with dense qubit connec-

tivity are less sensitive to application character-

istics and allow a wider variety of programs to

execute successfully. Compared to a baseline,

TriQ’s communication optimizations offer up

to 22X reduction in 2Q gate counts. For certain

programs, this means the difference between a

failed execution where noise corrupts the output

and a successful execution where the correct

answers dominate. When the architecture does

not have full connectivity, compilers like ours

can allow applications to take maximum advan-

tage of the available hardware resources.

Importance of Noise Adaptivity: Our work

shows that the noise variability in QC hardware

can be effectively mitigated by software techni-

ques. By mapping programs onto reliable regions

of the hardware and orchestrating communica-

tion along reliable hardware paths, TriQ effec-

tively shields applications from spatiotemporal

noise variations. These optimizations provide

further average success rate gains of 2.8X over

gate and communication optimizations, and

allowsmore applications to execute successfully.

Put together, TriQ’s optimizations offer up to 1.5-

28X higher success rates than IBM’s Qiskit,

Rigetti’s Quil compiler, and hand optimized code

from UMD. Our work is the first to show that such

optimizations are important even on trapped ion

systems which have less variability. Noise varia-

tions are likely in all near-term QC systems in the

next 5 to 10 years. Therefore, compilers like TriQ

will be crucial for reliable program executions.

TriQ’s functionality is portable across

diverse platforms while still performing full

top-to-bottom optimizations for device and

Figure 5. Success rate for 12 benchmarks on 7 systems. Success rates varies drastically across systems and is

influenced by error rates, qubit connectivity, and application-machine topology match. Benchmarks that are too large to be

mapped onto a machine are marked “X.” This comparison is intended to understand the impact of architectural design

choices such as gate set and connectivity on benchmark performance and is not intended to pick a winning technology,

vendor or implementation. Individual benchmark performance numbers may change over time. These measurements

represent a snapshot of the performance of these systems when we performed the experiments.
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application characteristics provided as compile-

time inputs. Leveraging microarchitecture

details such as native gate sets and noise rates

was the key to our improvements. Therefore,

QC systems are not yet ready for device-indepen-

dent abstraction layers that hide and obstruct

information flow between hardware and

software.

IMPACT OF OUR WORK
Recently, tech news was dominated by dis-

cussions of Google’s so-called “quantum suprem-

acy” announcement and reactions from other

scientists and QC vendors.1 While QC systems

offering high revenue streams (e.g., as cloud

accelerators) are still in the future, clearly QC is

increasing in importance and has reached an

inflection point in terms of engineering achieve-

ments in real implementations. This makes our

work extremely timely, with high potential for

impact. Just this year, several aca-

demic and industry vendors have

already adjusted their compiler

toolflows and aspects of their

exposed gate sets in response to

our work. Our optimizations are

already part of IBM’s Qiskit Terra

compiler as of version 0.8 and

Rigetti’s Quil compiler version

1.16. TriQ, open sourced at

https://github.com/prakashmur-

ali/TriQ is also the first compiler

for trapped ion systems.

Our study features systems

with different qubit, noise, and architectural

attributes and provides important insights for

designing better architecture and hardware.

These insights will likely influence future QC

ISA design. Although QC applications work

with any universal gate set, we demonstrate

that shielding the natural gates for a qubit

technology by abstracting them into more

common gates imposes severe reliability and

performance overheads on NISQ systems.

Future QC ISAs need to work in tandem with

the underlying qubit technology. Our work

also underscores the importance of matching

the application’s communication requirements

and hardware topology by codesigning them.

When they are not well-matched, successful

executions are unlikely.

Our work also breaks new ground in QC

benchmarking by being distinct from the exist-

ing practices of measuring isolated hardware

characteristics or benchmarking custom-

designed applications. On one hand, vendors

characterize systems in terms of metrics such as

gate error rates and qubit coherence times.

These metrics are isolated measurements for

each hardware component, and not direct meas-

urements of program behavior. TriQ enables

direct and accurate measurements of program

behavior across widely divergent QC platforms.

In classical computing, this is akin to the differ-

ence between knowing characteristics like core

counts and clock rate, versus knowing actual

benchmark performance. On the other hand,

vendors have developed benchmarking applica-

tions such as quantum volume. These methods

use a family of custom generated

circuits to measure hardware qual-

ity. Our work does not field a pre-

ferred benchmark, but instead

relies on a suite of diverse applica-

tions to understand the impact of

hardware on applications. This is

similar to the difference between

benchmarking supercomputers

with LINPACK or other dedicated

algorithms, and measuring the per-

formance of real applications. We

believe that this approach of appli-

cation-based benchmarking will

become common practice in QC, much like how

benchmark suites such as SPEC are used for clas-

sical benchmarking.

Most importantly, our work represents a sig-

nificant advance on the way to practically viable

QC, which requires us to close a five to six order

of magnitude gap between algorithm needs

and device capabilities. Our work demonstrates

methods for achieving up to two orders of mag-

nitude improvements in program success rates

and our approaches work well across vendor

implementations. In a world where increasing

qubit count comes only with great engineering

effort, our work offers substantial and orthogo-

nal advances over underlying hardware progress

alone.

Our study features

systems with different

qubit, noise, and

architectural attributes

and provides important

insights for designing

better architecture and

hardware. These

insights will likely

influence future QC

ISA design.
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